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Extracting Surfaces from Fuzzy 3D-Ultrasound Data

Georgios Sakas, Stefan Walter
Fraunhofer Institute for Computer Graphics1
Abstract

Rendering 3D models from 3D-ultrasonic data is a complicated task
due to the noisy, fuzzy nature of ultrasound imaging containing a
lot of artifacts, speckle etc. In the method presented in this paper
we first apply several filtering techniques (low-pass, mathematical
morphology, multi-resolution analysis) to separate the areas of low
coherency containing mostly noise and speckle from those of useful
information. Our novel BLTP filtering can be applied at interactive
times on-the-fly under user control & feed-back. Goal of this pro-
cessing is to create a ’region-of-interest’ (ROI) mask, whereas the
data itself remains unaltered. Secondly,we examine several alterna-
tives to the original Levoy contouring method. Finally we introduce
an improved surface-extraction volume rendering procedure, app-
lied on the original data within the ROI areas for visualizing high
quality images within a few seconds on a normal workstation, or
even on a PC, thus making the complete system suitable for routine
clinical applications.

CR Descriptors: General Terms: Algorithms. I.3.3 [Compu-
ter Graphics]: Picture/image generation; I.3.8 [Computer Gra-
phics]: Applications; I.4.3 [Image Processing]: Enhancement,
Smoothing, Filtering; I.4.6 [Image Processing]: Segmentation,
Edge and Feature Detection, Pixel Classification; J.3 [Life and
Medical Sciences]. Additional Keywords: 3D ultrasound, multi-
resolution analysis, morphology, volume rendering

1 Introduction

3D ultrasound is a very new and most interesting application in
the area of ’tomographic’ medical imaging, able to become a fast,
non-radiative, non-invasive, and inexpensive volumetric data ac-
quisition technique with unique advantages for the localisation of
vessels and tumours in soft tissue (spleen,kidneys, liver, breast etc.).
In general, tomographic techniques (CT, MR, PET etc.) allow for
a high anatomical clarity when inspecting the interior of the human
body. In addition, they enable a 3D reconstruction and examination
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of regions of interest, offering obvious benefits (reviewing from
any desired angle, isolation of crucial locations, visualization of
internal structures, ’fly-by’, accurate measurements of distances,
angles, volumes etc.).

Transducer

Ultrasound
Echo

Skin

Interface

Tissue

Figure 1: The principal function of ultrasound

The physical principle of ultrasound is as following [11]: sound
waves of high frequency (1–15 MHz) emanate from a row of sour-
ces that are located on the surface of a transducer which is in direct
contact with the skin. The sound waves penetrate the human tissue
travelling with a speed of 1450–1580 m/s, depending upon the type
of tissue. The sound waves are reflected partially if they hit an
interface between two different types of tissue (e.g. muscle and
bone). The reflected wavefronts are detected by sensors (micro-
phones) located next to the sources on the transducer. The intensity
of reflected energy is proportional to the sound impedance diffe-
rence of the two corresponding types of tissue and depends on the
difference of the sound impendancesZ1 and Z2:

Ir = Ie �

�
1 � Z2

Z1

�
�

1 +
Z2
Z1

� (1)

An image of the interior structure can be reconstructed based upon
the total travelling time, the (average) speed, and the energy inten-
sity of the reflected waves. The resulting 3D images essentially
represent hidden internal “surfaces”. The principle is similar to
radar with the difference being that it uses mechanical instead of
electromagnetic waves.

In contrast to the common 2D case where a single image slice
is acquired, 3D ultrasonic techniques cover a volume within the
body with a series of subsequent image slices. The acquisition of
these slices can be achieved by means of various scan and tracking
techniques and will be not discussed further in this paper; please
refer to [12], [19], and [21] for more details.
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2 Previous Works & Drawbacks

One of the major reasons for the limited acceptance of 3D ultra-
sound to date is the complete lack of an appropriate visualisation
technique, able to display clear surfaces out of the acquired data.
Our very first approach was to use well known techniques, used for
MRI and CT data to extract surfaces. Such techniques include bi-
narization [7], iso-surfacing [4], contour connecting [3], marching
cubes [9], and volume rendering either as semi-transparent cloud
[13], or as fuzzy gradient shading [8]. Manual contouring [19] is
too slow and impractical for real-life applications. Unfortunately,
ultrasound images posses several features causing all these techni-
ques to fail totally. The most important of these features as reported
in [16] are:

1. significant amount of noise and speckle
2. much lower dynamic range as compared to CT or MR
3. high variations in the intensity of neighbouring voxels, even

within homogeneous tissue areas
4. boundaries with varying grey level caused by the variation of

surface curvature and orientation to the sound source
5. partially or completely shadowed surfaces from objects closer

and within the direction of the sound source (e.g. a hand shadows
the face)

6. the regions representing boundaries are not sharp but show a
width of several pixels

7. poor alignment between subsequent images (parallel–scan devi-
ces only)

8. pixels representing varying geometric resolutions depending on
the distance from the sound source (fan–scanning devices only)

The general appearance of a volume rendered 3D ultrasound da-
taset is that of a solid block covered with ’noise snow’ (fig. 13
right). A closer analysis proved that noise and speckle contained
in the image caused so many obstacles (blobs) around the objects,
that rays usually fail to penetrate deep enough to reach the crucial
internal surfaces. The low dynamic range makes a straight-forward
discrimination between speckle and information (e.g. by means of
thresholding) impossible. Even when a surface is reached, methods
based on a single threshold value ([4], [7], [9] etc.) fail to detect
a continuous surface due to the features 3, 4, & 5 listed above.
Lastly, the nature of gradient shading employed, e.g. in [8], is very
sensitive to high frequency noise and speckle and therefore it is not
suitable to generate a smooth surface because of reasons 3, 6, 7,
& 8 (see fig. 2 upper left). However, Levoy’s continuous opacity
classificator (eq. 2) has been found to give good estimations of the
presence of a surface contour (a and r are scaling factors and S a
threshold value):

opacity = a �

8<
:

1 : g(u; v;w) = S

1 � 1
r
�
jg(u;v;w)�Sj
jrg(u;v;w)j : jrg(u; v;w)j > 0

0 : otherwise
(2)

Some time ago we started to search for ways of discriminating the
tissue of interest from the lerge amount of apparently noisy signal.
Initially we filtered the original voxels with an approximation of
a Gaussian kernel with discrete binomial coefficients due to its
separability, normality and symmetry [6]:

G(x; �) =
1

2 � ��2
� e

�
x

2

2��2

�
(3)

In a discrete implementation the factors of this kernel are usually
calculated by the binomial coefficients:�

n

k

�
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Filtering a function g with a filter F is a convolution [6]:

g
0
(x) = g(x) � F (x) =

Z +1

�1

g(x) � F (x� x1) � dx1 (4)

In the discrete case,, a convolution is expressed as a weighted sum
of the signal g over the (2n+ 1) size of the filter kernel F :

g
0
(u) =

nX
i=�n

g(u) � F (u� i) (5)

An extension to higher dimensions is straightforward by convolu-
ting the filter function by itself. The main effect of such a low-pass
filtering is a smoothing of sharp details together with a reduction
of noise and speckle. The separability enables a filtering of a 2563

dataset by a Gaussian kernel of 33 within 6.51 seconds, see also tab.
2. On the other hand, the intermediate results must be buffered,
which temporally requires a duplication of memory space.

Figure 2: Filtering and volume rendering of an original 2563 dataset
with Gaussian kernels of 33, 53, and 73

Fig. 2 presents a 2563 dataset after filtering with Gaussian ker-
nels of increasing size and volume rendering using Levoy’s method
[8]. Although noise and speckle artifacts are reduced, the surfaces
gradually appear over-smoothed, non-sharp, unnatural, and do not
show much details.
6



In an earlier study [16] we tested the processing of the ori-
ginal data by the combination of three different filters: Gaussian
for noise/speckle reduction, speckle removal for contour smoo-
thing, and median for both noise/speckle reduction and closing of
small gaps caused by misalignments and differences in the ave-
rage luminosity between subsequent images. The filters had been
implemented in 3D and applied to the acquired data during a pre-
processing stage. Although the results have been very encouraging,
such filters require significant computing times and therefore they
remain pre-processing stages. Further, the large pre-processing ti-
mes do not allow interactive control of the filtering level by the
user, thus making this approach inflexible, non-interactive and not
suitable for clinical applications. Finally filtering also changes the
original nature of the data and is therefore not generally accepted
in the medical community.

3 Multi-Resolution Surface Identification

The aim of this paper is to develop a fast, intuitive and effective
method for rendering clear contours from fuzzy data. All techni-
ques must allow for a user-defined, interactive, on-line processing
on average computers in order to be used under routine clinical
conditions. This goal has been achieved through a combination of
multi-resolution analysis [2], [18], [10], filtering [6], and volume
rendering [8], and consists of three subsequent tasks:

1. identify and separate noisy areas carrying effectively no infor-
mation (segmentation), discussed in section 4

2. process the data within the remaining areas (filtering), discussed
in section 5

3. use adequate visualization methods (volume rendering), discus-
sed in section 6.

The first task is used to allow the rays to penetrate up to the internal
surfaces of interest. In addition, it accounts for significant speed-
up, since the following computer intensive tasks can be performed
only within the remaining areas. The second task enables the recon-
struction of a well-defined surface and the third task is necessary to
create a smooth-looking surface meaningful to the human eye. All
three tasks are performed in a multi-resolution framework. After
reading the original data, a Gaussian pyramid of levels-of-detail
(fig. 3) is initially generated [14]. Such a pyramid requires only
14% additional memory space and is computed within 0.27 additio-
nal seconds for a 1283 and 0.88 additional seconds for a 2563 field
for a kernel of 33 on a SUN Sparc20 due to the separability of the
Gaussian kernel (see tab. 2).

Figure 3: The Gaussian pyramid

4 Segmentation

The main idea for the multi-resolution feature identification and
segmentation is that ’real’ surfaces posses a higher coherency as
4

compared to speckle or noise. This means that when filtering the
data to successivelower levels of detail(corresponding to higher py-
ramid levels with lower voxel resolution), noise, speckle and minor
structures could be expected to disappear faster than useful surfa-
ces due to their lower coherency, whereas ’larger’ surfaces should
still remain detectable even on lower resolutions. By inverting this
idea, after generating a level-of-detail representation of the original
data, we first try to identify crucial regions on higher pyramid levels
where little or no noise/speckle is expected. Information carrying
areas are then propagated (mapped) to higher resolution levels and
the process is repeated until the original data level is reached. Regi-
ons ’masked out’ by this processing are not further examined by any
of the subsequent levels. The result of the segmentation processing
is a binary mask defining a region of interest ROI (since we operate
in voxel space, we generate a 3D mask defining a volume of interest
VOI). Only within this VOI region are valid contours expected and
therefore only these are accessed during volume rendering. The
remaining non-valid areas are regarded to be empty.

In a multi-resolution framework, the process theoretically starts
with the first node (the root) of the pyramid. In practice, however,
only 1 to 3 levels over the highest resolution (pyramid basement) are
used. Starting on a certain leveln, regions of interest are identified:
we tested two different selection methods discussed in the following
sections 4.1 and 4.2. Then each valid voxel is projected on the next
higher resolution level. Due to the multi-resolution framework,
one voxel of level n projects onto 8 voxels of the level n � 1.
Changing the levels, the same procedure is repeated with levels
n � 1 and n � 2 and so on until the highest resolution level 0 is
reached. However, after leaving the starting level n, only voxels
falling within the already selected areas are considered, reducing
the amount of computing time, a crucial fact with increasing volume
resolution.

An implication of each voxel projecting on 8 successors is that
the selection procedure is a crucial decision for the success of the
method. A voxel misclassified as empty on level n will introduce a
gap of 8 voxels on leveln�1,64 voxels on leveln�2 etc. Such gaps
introduce serious visible artifacts similar to those shown in fig. 7
left. On the other hand, if the selection criterion is rather relaxed, the
effect of noise/speckle reduction will be missed. A possible solution
is to start with a rather relaxed criterion and become gradually more
restrictive when propagating to higher resolutions.

Instead of filtering the grey values of the voxels Vn[u; v;w], we
decided to process the opacity volume On[u; v;w] and leave the
data itself unchanged. Thus, for every level of the data pyramid
we allocate a second opacity field of equal size thereby creating an
opacity pyramid and assigning to each element the corresponding
opacity value as calculated by Levoy’s classificator (eq. 2).

4.1 Mathematical Morphology

Mathematical morphology can be used to implement a wide spec-
trum of operations on binary images or datasets. The fundamental
morphological operations on a binary image P with an element E
are erosion and dilation, as well as their combination opening.

EROSION(P;E) := fpjEpincluded inPg

DILATION(P;E) := fpjEp \ P 6= fgg

OPENING(P;E) := DILATION(EROSION(P;E); E)

The theoretical details are given in [5] and will not be repeated
here. In simple words, depending on the shape and size of E,
erosion removes structures smaller than a certain size and can be
used for removing noise or speckle blobs. Dilation enlarges details
larger than a minimum size and can be used to fill up small contour
gaps. Opening is an erosion followed by a dilation. All operations
can be used in an iterative way, i.e. an already eroded volume can be
67



eroded again etc. The element for the morphology can have several
shapes. The most common candidates are a small cube of 33 voxels
or a 3D cross containing the central voxel and its 6 face-connected
neighbours (see fig. 4).

Figure 4: Two possible morphological elementsE27 and E7

An additional degree of freedom is to decide how many voxels
of E should be occupied in order to select the central voxel as to
be valid. For reasons of computational efficiency, we choose to use
the cross with 3 occupied voxels on higher and 4 on lower pyramid
levels. This means that our selection criterion is more relaxed in
the beginning and becomes more restrictive on higher resolution
levels.
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Figure 5: The morphological pipeline

The first action is to calculate for each voxel field Vn[u; v;w]

on pyramid level n the corresponding opacity field On[u; v;w].
For each opacity field we calculate a binary volume Bn[u; v;w]

by setting all elements with a non-zero opacity to 1. This binary
4

field is then morphologically processed and the result is the mask
Mn[u; v;w], which is then used to mask the local level opacities
by means of the AND operation and is propagated to the higher
resolutions as shown schematically in fig. 5.

Figure 6: From upper left to lower right: 2563 dataset showing liver
vessels before filtering and processed with erosion after 20, 30 and
40 iterations

Fig. 6 demonstrates the effect of erosion after several iterations
The example shows and erosion performed with one level and an
element E6 size of 3. Small and isolated noise/speckle areas have
been successfully suppressed but the surface of the objects has
also been eroded, producing image artifacts clearly visible on the
magnification shown in fig. 7 left. To suppress aliasing of the
surfaces we apply the opening operation, i.e. a dilation after the
erosion in order to ’fill the surface gaps’ created by the erosion.
Opening successfully suppresses the surface artifacts, preserving
the shape of major structures. A comparison of erosion and opening
can be seen in fig. 7. However, more than 20–30 iterations are
necessary in order to obtain a good image, resulting in a very time
intensive procedure as shown on tab. 2.

To conclude, applying erosion alone is not sufficient, since
it removes parts of the useful surface together with speckle and
noise, whereas opening gives better results. Both filters require
several iterations before providing an acceptable image quality. An
additional drawback of using morphological filters lies in the large
number of parameters to be adjusted, i.e. Levoy threshold and
68



Figure 7: Left a magnification of fig. 6 after 30 erosion iterations
showing visible artifacts. Right the same data after 30 opening
operations.

tolerance, shape & order ofE, and number of iterations for erosion
and dilation. This gives a total of over 6 degrees of freedom,
making the whole process non-intuitive and impractical for clinical
applications.

4.2 BLTP-Method

In order to overcome the drawbacks of the morphological filters in
intuiton and computational efficiency, we developed a method we
called BLTP meaning binarize, low-pass, threshold & propagate.
The principle of the filter is better explained in a 1D example shown
in fig. 8 and 9, an extension to 3D is straightforward.

Mask

Binary Opacities

Original Opacities

Filtered Opacities

Threshold

Low-Pass

Binarization

A

A

S

Gauss

A

A

Figure 8: The principle of extracting a VOI mask using BLTP
filtering in 1D

Again, the first action is to create for each opacity field
On[u;v; w] a two-valued real numbers volume Dn[u; v;w] by
setting all voxels with an non-zero opacity to 1.0, see fig. 10.
Small details, speckle and isolated noisy voxels will be converted
to small unity steps, whereas large occupied areas will generate
more extended structures as demonstrated in fig. 8. Due to the
usage of discrete unity steps, the convolution (low-pass filtering)
of Dn[u; v;w] with a Gaussian kernel is represented by a discrete
46
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Figure 9: Result of the convolution of unity steps (upper) with a
Gaussian kernel of size 3 (lower)

sum of Gaussian kernels,symmetrical to the position of the occupied
voxel and accordingly shifted in relation to each other:

g
0
(u) =

nX
i=�n

g(u) �
1

2 � ��2
� e

(u�i)2

2��2

where g represents the original grey values, g0 the filtered function,
and 2n+1 the size of the Gaussian kernel. The graphical represen-
tation of such a convolution applied on structures of different size
is shown in fig. 9.

The numerical result of such a filtering for the 1D case can be
seen on tab. 1. The structures are symmetrical over the correspon-
ding maximum value; Due to lack of space some ’overflowing’
values have been omitted in tab. 1. We call the low-pass filtered
field LPn[u; v;w].

Kernel 3 5
1 Vox. .25 .5 .25 .0625 .25 .375 .25 .0625
2 Vox. .25 .75 .75 .25 .0625 .3125 .625 .625 .3125
3 Vox. .25 .75 1.0 .75 .25 .0625 .3125 .6875 .875 .6875
4 Vox. .25 .75 1.0 1.0 .75 .0625 .3125 .6875 .9375 .9375
5 Vox. .25 .75 1.0 1.0 1.0 .0625 .3125 .6875 .9375 1.0

Table 1: 1D low-pass filtering discrete unit jumps of varying size
with different Gaussian kernels. The structures are symmetrical
over the corresponding maximum value; Due to lack of space some
values have been omitted

In simple words, low-pass filtering will change the sharp edges
of the unity steps to smoother slopes and change the maximum of
small structures to a lower value. The shape of a structure after
filtering (inclination of the slope, value of maximum) depends on
both the order of the kernel and the size of the initial structure.
From tab. 1 one can easily see that filtering a structure of k unit
steps width with a kernel of 2n + 1 results in a structure with an
extend of k + 2n pixels. In addition, if k � 2n, all values of the
result will be below 1.0, and when k � 2n+1, there will be k�2n
coefficients having the value 1.0. This allows filtering of structures
up to a given size as explained below.

There are two different possibilities to process the field
LPn[u; v;w]. The first arises from the above observation that
structures smaller than the kernel size will have all their coeffi-
cients smaller than 1.0. Therefore, in order to eliminate structures
up to a given structure size k, one has to select a filter with the
next greater odd size 2n+ 1 � k and threshold the resulting field
LPn, setting all opacities below 1.0 to zero. The binary mask
9
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Figure 10: The principle of the BLTP pipeline

Mn[u; v;w] is calculated by dilating the result field after threshol-
ding Tn[u; v;w] by an element E of the size k in order to expand
again the remaining 1.0–coefficients to the original extend of the
structures1. After dilation the resulting mask Mn[u; v;w] is used
for masking the opacities of the current level (AND operation) as
well as propagating to the next level as shown in fig. 10. The
method can effectively and accurately suppress noise and speckle
blobs. Due to the fact that thresholding with 1.0 is a trivial opera-
tion and dilation is performed only in regions where 1.0–coefficients
are presented, this processing is completed quick even with large
datasets.

A simplified and faster version of the above algorithm avoids
dilation. After choosing the appropriate kernel size and filtering the
binary field Dn[u;v;w] in a way similar as above, LPn[u; v;w]

is subsequently filtered to a binary field Tn[u;v; w] by means of
a free definable threshold ths, i.e. values below ths are mapped
to 0 and above ths to 1. By varying the width k of the kernel
and the threshold value of ths one can easily control the degree
of blob suppression. As an example, one can see on tab. 1 that
when using a kernel of size 5, a threshold just above 0:375 will
eliminate structures of unit size and leave larger ones unchanged, a

1To eliminate structures with size 1 and 2 one has to use an appropriately scaled
kernel of size 3
47
threshold just above 0:625 will eliminate structures with a size of
one or two voxels etc. A graphical representation of this effect can
also be seen in fig. 8. The result after thresholding is the binary
field Mn[u; v;w] which is used to mask the opacities of level n
and propagated to level n+ 1 as shown schematically2 in fig. 10.
Thus this variant is an approximation of the previous one, using a
free adjustable threshold and avoiding the dilation after calculating
Tn[u; v;w].

Figure 11: BLTP filtering of a 2563 liver dataset without dilation
with a Gaussian kernel of 53 and thresholds increasing from upper
left to lower right

The advantage of this variant of the BLTP method as compared
with morphological operation lies in its simplicity and computa-
tional efficiency. A BLTP re-calculation including thresholding,
mask calculation and propagation without low-pass re-calculation
requires only 24.8 seconds for a 2563 pyramid and 8.78 seconds for
a 1283 one (see tab. 2), making the process suitable for interactive
purposes. Although the exact size of the eliminated structures is
only approximately known, the interactive adjustment of the thres-
hold thn and the quick feed-back allows a comfortable and intuitive
processing of the dataset. The effects of using the BLTP filter can
be shown in fig. 11. By varying the threshold thn, a significant
amount of speckleand noise could be reduced whereas the liver ves-
sels remained effectively unchanged. To date, this BLTP variant is

2Fig. 10 demonstrates only the principle of the method. For reasons of computatio-
nal efficiency the C-code implementation includes several differences, e.g. buffering
stages are omitted or merged together with filter stages etc.
0



Volume Kernel Lowpass Pyramid Opacity Dilation Opening Threshold, BLTP Morphology
resolution size level 0 level 1: : : n field 1 iteration 1 iteration Mask, Project pipeline 20 iterations

1283 33 1.0 0.27 3.38 3.15 6.54 8.78 10.05 139.53
53 1.2 0.38 10.36

2563 33 6.51 0.88 20.36 28.21 54.78 24.8 32.19 1099.6
53 12.17 1.24 38.21

Table 2: CPU times on SUN Sparc 20 for various filtering operations with two different kernel sizes and volume resolutions. Lowpass &
pyramid are computed once per dataset, opacity only when changing Levoy’s iso-value; these three stages are regaded as offset times since
they change very rarily. Morphological operations given for an elementE = 3. On the right the total processing time for BLTP with variable
threshold and opening after 20 iterations.
the one most frequently used.
All three examined methods suppress only blobs of noise or

speckle. Other obstacles, such as the ultrasound field near the
transducer or the hand of the fetus obscuring the face, show the
same characteristics as the ’real surfaces’ and therefore must be
removed semi-automatically using methods reported in [16].

5 Contour Filtering

After segmenting the regions of interest, our second task was to
improve the appearance of the contours within these VOIs. Le-
voy’s opacity formula (eq. 2), being essentially a combination of
an iso-surfacing weighted by the local grey level gradient, has been
used as starting point for further experiments. We examined two
additional edge detectors more closely as an alternative to the gra-
dient proposed by Levoy (see [1] for an excellent survey). In the
first case we employed a 3D version of the Sobel-operator instead
of the gradient in the denominator of eq. 2. The 2D kernel is:
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1
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The result can be seen in fig. 12. The differences in the quality
as compared to Levoy’s original method are rather small, however,
the computation time has been almost doubled. In the second case
we used a Laplacian-of-Gaussian (LOG) operator. Again, the 2D
kernel is:
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This filter is a combination of a low-pass followed by an edge
detector and is expected to give good results even with noisy images.
Although the computing time has been doubled again, the result
shown on fig. 12 has not been significantly improved as compared
to Levoy’s original method.
4

Figure 12: Testing alternative edge detection methods for estima-
ting the opacity. From upper left to lower right: grey image, Levoy,
Sobel and LOG edge detection

We implemented several other experiments with the goal to im-
prove the selectivity of Levoy’s formula, e.g. by using information
for contours and/or grey values from neighbouring resolution levels.
All these experiments failed to provide significant improvements
and therefore are not reported here. As a result, the original Levoy
formula has so far provided the best trade-off between quality and
speed.

6 Volume Rendering

In order to volume render the processed datasets we had to apply
three modifications to the standard volume rendering pipeline [15].
The first modification is due to the nature of ultrasonic data as
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is shown in fig. 13. The ultrasound cone shown on the left is
surrounded by empty space, i.e. voxels with zero value. Due
to the opacity formula (eq. 2) this causes a very high gradient
and thus a high opacity value along the interface to the empty
space, which is manifested as a solid ’curtain’ obscuring the volume
interior. This effect can be totally suppressed by turning every
opacity neighbouring an empty voxel to zero: Due to the nature
of ultrasonic imaging, voxels with a zero value may occur only in
the empty space and not within the data itself. The size of this
neighbourhood must be adjusted in accordance with the size of the
Gaussian kernel for the higher pyramid levels. For a kernel with a
size of 2n+ 1 the suppression neighbourhood is:

opacity(u; v;w) =

(
opacity : g(u + i; v + j;w+ k) 6= 0

8 (i; j; k) 2 (�n : : : n)
0 : otherwise

Figure 13: Left a grey image of the liver, middle the corresponding
opacity values, right a volume rendered dataset. Note the high
opacity values along the interface between data and empty space
(middle) causing a solid ’curtain’ obscuring the volume interior
(right)

The second modification deals with the visual appearance of
the reconstructed surface. As mentioned in section 2, Levoy’s
method used the local gradient as the surface normal, thus being very
sensitive to intensity fluctuations typically apparent in ultrasonic
data, thereby creating an extremely rough surface. Fig. 14 upper
left shows how rough such a surface can be after removing almost
100% of the noise and speckle using BLTP filtering. It is important
to remember that all filtering operations only mask out regions
not containing coherent edges leaving thereby the original data
unchanged. Thus, the small intensity fluctuations remain on the
surface and cause large normal vector perturbations resulting in an
unrecognisably rough surface. Our solution is to accumulate the
opacity values as originally proposed but to use a normal vector
from higher pyramid levels. These levels contain low-pass filtered
data, so that the normal vectors are also less perturbed and change
more smoothly. Similarly, one can use normal vectors from a
lower level to add ’sharpness’ to a smooth surface. By means of
a slider the degree of smoothness or sharpness can be changed
continuously through (linearly) interpolating the normal vectors
from the corresponding pyramid levels.

N(u; v;w) = Nn(u; v;w) � (1 � jtj) +Nn+dte(u; v;w) � jtj

�1:0 � t � 1:0 (6)

This effect is shown in fig. 14. It is important to note that for
all images exactly the same opacities have been used; the different
visual appearance is caused only by the modification of the normal
vector.

The last feature is that we extract both surface as well as vo-
lumetric information during a single traversing. Extracted features
are depth-sorted and stored together with their individual depth in
a 2D structure similar to a ZZ-buffer [17]. After traversing and
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Figure 14: Fetus after removing almost all blobs, before (upper left)
and after normal vector smoothing with t = 0:3;0:7;1:0

Figure 15: Continuous transition between MIP and surface rende-
ring

during visualisation one can select the type of desired visual repre-
sentation interactively. Also mixed values (e.g. 40% surface, 60%
X-ray) can be displayed as shown in fig. 15. The visualisation
evaluates the values of the ZZ-buffer and since it requires no new
ray-traversing, it can be performed at rates of several frames per
second. TheO(n2) requirements of space allow the pre-calculation
and storage of a complete rotation sequence in the main memory.
The visual representation can be selected interactively during the
play-back of a pre-recorded loop.

7 Results & Further Works

For our tests we used datasets from different devices showing eit-
her fetuses around the 25th week of pregnancy (3–4 months before
birth, fig. 16) or scans of the liver (fig. 5, 11). More than a dozen
2



datasets like those presented in fig. 16 have been acquired under
routine clinical conditions in the Heidelberg University Hospital,
using a ’Kretz Voluson 530’ device. The typical resolution in a Car-
tesian coordinate system is 10 Mvoxels, the maximum resolution
16 Mvoxels (2563) . Using the methods reported here and in [16],
we succeeded in visualizing all of the provided datasets. The time
required for the complete processing of each set was less than five
minutes and included loading from the disc, filtering, segmenting,
smoothing, visualization and loop generation. The first results from
the clinical routine have been very encouraging indicating clinical
evidence at least in the area of the fetal diagnosis [20]. Fig. 17
compares an image reconstructed from data acquired in the 25th
pregnancy week with a photo of the baby 24 hours after birth. The
time for volume rendering one image with resolution of 5122 pixels
is about 10 seconds on an IBM R6000, a rotation sequence requi-
red only 3 minutes. Diagnosis of abnormal cases can be definitely
improved. Tab. 3 presents the results for volume rendering a field
of 4 MVoxels in a resolution of 3002 pixels using various hardware
platforms.

Figure 16: Different fetal faces 3–4 months before birth

The major advantages of our method in visualizing ultrasonic
data are:

– Understanding the content of 3D ultrasound images has been
significantly improved. Our visualisation methods provide a
true ’added value’ for diagnosis.

– Noise and speckle included in the 3D ultrasound data has been
significantly reduced without altering the original data.
4

Figure 17: Left data of the 25th pregnancy week, right a photograph
24 hours after birth

Hardware Surface Vol. Rendering Surface & MIP Vol. Rendering
Platform Standard High Highest Standard High Highest
SUN Sparc10 5.1 11.7 13.6 5.3 12.2 22
SUN Sparc20 2.3 7.8 9.6 3.6 6.8 14.2
SGI Indigo 2.5 7.7 8.4 2.9 5.9 11.0
IBM R6000 1.9 5.3 5.5 2.5 4.9 9.1
486 40 MHz 10.9 27.5 44.6 16,5 42.4 68.9
586 90 MHz 1.8 4.4 5.9 3.1 5.4 11.0

Table 3: Runtimes in CPU seconds for volume rendering a dataset
of 2563 � 64 voxels creating both surface and transparent (MIP)
images at a resolution of 3002 pixels at three different image quality
levels

– The type and degree of noise/speckle reduction, surface smoo-
thing, visual representation, etc., can be interactively selected.
The original data remains thereby unchangedand can be referred
to at all times. This allows the user (physician) to control the
degree of altering the original data.

– The speed of visualisation enables an immediate evaluation of
the acquired data during examination of the patient.

– The system runs on common commercial workstations including
PCs and needs no special hardware.

In addition, the BLTP filtering is clearly the method of choice
because it provides results similar to mathematical morphology but
runs at least one order of magnitude faster, is more intuitive and
easy-to-use and allows interactive manipulation.

After several years of research we recognise that the work just
started. The most important conclusion from this work is that
we showed that global filtering provides good results but is unac-
ceptably slow for practical applications. On the other hand, VOI
identification and local, possibly adaptive, filtering provides even
better results within interactive times. Advanced filtering that ad-
apts to the local data features in a multi-resolution framework is the
most important goal for future work.

First of all, the BLTP method should be further extended. In-
stead of using a Gaussian low-pass filter, we should consider the
possibility of employing more suitable band-limiting filters, enab-
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ling an elimination of structures of a specific size. A rich amount of
literature exists on this topic. As a very promising avenue of rese-
arch we are currently investigating the possibility of using wavelets
as an alternative for BLTP filtering. Wavelets offer very attractive
possibilities, because they combine highly desired signal proces-
sing features with the multi-resolution framework employed here.
Furthermore, one could also investigate the usage of 3D-correlation
functions, most likely implemented in the frequency domain, for
identification of surfaces. Both these methods require substantial
computing power and have therefore not been considered yet for the
desired interactive low-cost system. However, processing times can
be reduced when working in the frequency domain by using signal
processors, which makes the additional hardware costs rather rea-
sonable. Different possibilities employ filters for edge-preserving
resolution reduction, possibly combined with local speckle remo-
val. We expect that such filters may provide better results than the
Gaussian kernels employed here.

A remarkable piece of work is presented in [18] claiming ex-
cellent results in both precision and robustness for extracting edges
from noisy images. The author also uses a pyramid of Gaussian
filtered 2D images to recognise edges in a multi-resolution frame-
work. In addition he provides a very good review of the theory
and mathematics proofing of the applicability and superior perfor-
mance of his method. The main idea there is to calculate edges
on different scales using the LOG operator and then multiply the
corresponding magnitudes. Major edges will thereby be amplified
whereas minor edges will be attenuated below a given threshold.
This shows similarities to our concept of mask propagation along
resolution levels. An additional step eliminates ’false positives’,
i.e. points not surrounded by edges of similar strength along the
direction perpendicular to the local gradient. This reflects the idea
that edges must show a continuity perpendicular to their surface
and shows similarities to morphological operators. Although the
principle ideas are similar, the two approachesalso show substantial
differences. Schunck’s method works without resolution reduction,
a fact introducing a memory space explosion not tractable in 3D
imaging. Secondly, he detects edges whereas we identify areas
(VOI). Thirdly, the calculation and multiplication of edge magnitu-
des at different scales is extremely computation intensive whereas
we restrict the calculations within the areas masked from the lower
resolution. Nevertheless, a combination of our approach with his
advancedand robust edge estimators seems possible and promising.

Acknowledgements Thanks to Dr. Meindl from the DKD, W. Duda
and K. Holle from Kretz Ultrasound for providing clinical data, as
well as to Prof. Wischnik and Dr. Hiltmann from the Universitäts-
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